Kiwifruit and Digestive Function

Lynley N Drummond
How do we determine the effects on digestive function?

- Promotion of digestion
- Beneficial effects

- Effect on relief of poor digestion
- Ability to relieve
- Digestive dysfunction
Digestive Dysfunction

A major consequence of life-style, aging & chronic disease e.g. diabetes

- Indigestion
- Gastric reflux
- Nausea
- Bloating
- Vomiting
- Abdominal discomfort
- Constipation
- Gastroparesis
 - Delayed gastric emptying
- Treatment options limited
 - Dietary modification
 - Pharmacological intervention

- Food / dietary solution: How can kiwi contribute?
Can one food influence digestion?

- What components of the food have the potential to be effective for addressing digestive function?
- What is the potential mode(s) of action throughout the entire GI tract?
Fibre Content of Kiwi

<table>
<thead>
<tr>
<th>Dietary Fibre (Prosky)</th>
<th>NSP (Englyst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Insoluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Soluble</td>
<td>Soluble</td>
</tr>
</tbody>
</table>

NSP: Non-starch polysaccharides
How does the fibre behave during digestion?

- Using a gastric digestion model we looked at the behaviour of the fibre during digestion
 - Swelling
 - Viscosity
 - Glucose diffusion
 - Mixing
Fibre swells significantly during digestion

Post digestion volume per unit of pulp digested

![Graph showing volume before and after digestion for two groups: Green and Gold.](image-url)
Fibre swells significantly during digestion

Starting vol = 30 ml pulp

Post digestion
Kiwi fibre has the capacity to substantially reduce the rate of diffusion of glucose.

Kiwi undigested remnants have a substantial capacity to reduce both mixing and diffusion.

Kiwi fibre has a more than additive effect when added to medium with some background viscosity, such as would occur in the gut.

- Kiwi fibre probably increases the resistance of digesta to mixing.

During digestion kiwi has a substantial capacity to swell beyond its volume in the fresh fruit. This will influence the digestive processes significantly.

- Recent work suggests an influence on the absorption of nutrients.
Fate of Kiwi NSP in the GI Tract

Disappearance of kiwi NSP fractions throughout the gastrointestinal tract of the growing pig

Change in gut-soluble NSP as a proportion of dry matter with passage of diet through the gut

1, diet; 2, stomach; 3, jejunum; 4, ileum; 5, faeces.
Diet 1, control; diet 2, cellulose; diet 3 kiwi; diet 4, kiwi fibre.
Fate of Kiwi NSP in the GI Tract

- Concentration of pectic fractions in the ileum
 - Extends region of digestion along the ileum
 - Reduces rate of absorption of nutrients
 - Glucose absorption
 - Glycaemic response
 - Lipid absorption
 - Reduces post-prandial lipaemia (CVD risk)
 - Bile acid resorption (in terminal ileum)
 - Reduces plasma cholesterol

![Graph showing Transit Time, WHC (%), and Faecal bulking (g) for different dietary fibers.](image-url)
Fate of Kiwi NSP in the GI Tract

- Sharp decline in pectic fractions in faeces
 - Used as fermentable substrate for colonic microflora

- Accumulation of cellulose-type fractions
 - Increases in faecal bulking & water holding capacity

- Reduction in GI transit time

The full effect of the differences observed between feeding groups cannot be attributed to the fibre content alone.
Further Effects of Kiwi in the GI Tract

- Recent work confirms:
 - Significant adaptation of the gut to kiwi in the diet (short & long term)
 - Can affect nutrient uptake (weight management)
 - Enhanced microbial fermentation
 - Increased butyric acid production
 - Changes in microbial populations
 - Prebiotic potential
 - Modulation of gut-mediated immune function
Can dietary enzymes aid digestion & reduce measures of digestive dysfunction?

- **ACTINIDIN**
 - A unique enzyme in *Actinidia deliciosa* var. Hayward (Green Kiwi)
 - Cysteine protease
 - Known industrial applications (meat tenderising, protein hydrolysis processes)
 - OTC digestive enzyme supplements
Kiwi – the natural digestive aid?

- Potential function of actinidin in digestion
 - Breaks down protein
 - Improved digestion of protein
 - Better absorption
 - Digestive comfort
- Anecdotal evidence it assists digestion
 - No evidence in literature

Tested the assumption on a range of different food proteins using a laboratory models of digestion
- Gastric (stomach)
- Ileal (small intestine)
LITERATURE REVIEW: The Role of Kiwifruit Proteases in the Digestion and Uptake of Dietary Proteins and Amino Acids

In vitro gastric digestion models evaluating the effects of kiwi on the breakdown of different food proteins

In vivo gastric digestion models (animal models)

In vivo gastric digestion models (human ileostomates)

- Gastric perfusion
- Scintigraphy studies

Improving Digestion – a research strategy
In vitro protein digestion reactor

- **Stage 1** : Gastric
 - Simulated juice with Pepsin
 - pH = 2
 - Temp: 37°C
 - Duration: first 30 min

- **Stage 2** : Ileal
 - Intestinal simulated juice
 - With Pancreatin,
 - pH = 8
 - Temp: 37°C
 - Duration: next 120 min
Improving Protein Digestion - I

In vitro digestion of Na-caseinate using kiwi extract alone (no pepsin/pancreatin) under simulated gastric (first 30 min) and intestinal conditions (next 120 min): using RP-HPLC

Kiwi extract alone can digest approx. 45% of sodium caseinate within 150 minutes

Like the digestive enzymes, actinidin is active at very low pH
Improving Protein Digestion - I

In vitro gastric digestion of a milk protein

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>β</td>
<td>κ</td>
<td>MW: 26.63</td>
<td>16.95</td>
<td>14.44</td>
<td>6.5</td>
<td>3.5</td>
<td>C</td>
<td>A-30</td>
<td>A+30</td>
<td>A-30</td>
</tr>
</tbody>
</table>

C = Control
A- = No actinidin
A+ = In the presence of actinidin
30, 90 and 150 are the digestion times
Improving Protein Digestion - I

Actinidin Enhances Gastric Protein Digestion as Assessed Using an In Vitro Gastric Digestion Model

Lovedeep Kaur†, Shane M Rutherfurd†, Paul J Moughan†, Lynley Drummond‡ and Mike J Boland†*

†Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
‡ZESPRI International Ltd, Mt. Maunganui, New Zealand

Journal of Agricultural and Food Chemistry 2010 58(8), 5068-5073

Actinidin Enhances Protein Digestion in the Small Intestine as Assessed Using an In Vitro Digestion Model

Lovedeep Kaur†, Shane M Rutherfurd†, Paul J Moughan†, Lynley Drummond‡ and Mike J Boland†*

†Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
‡ZESPRI International Ltd, Mt. Maunganui, New Zealand

Journal of Agricultural and Food Chemistry 2010 58(8), 5074-5080
Improving Digestion II

In vivo Study

- **Study Design**
 - Male Sprague-Dawley rats
 - Fed 1 of 6 protein diets (whey, beef muscle, gelatin, soy, wheat, zein)
 - Actinidin control diet: GOLD kiwi
 - + Actinidin control diet: Green kiwi and actinidin to supplement to specific level

- Stomach and small intestine contents analysed for protein digestion
Improving Digestion II

In vivo Study

- Similar measures were made to the *in vitro* study

![Image of protein bands from SDS-PAGE analysis of a beef muscle-based diet and stomach chyme (S), jejunal digesta (J) and ileal digesta (I) of selected rats fed the beef muscle-based diet. The amount of sample loaded in each lane was normalized based on the concentration of titanium dioxide (indigestible marker). The protein bands were identified as follows: a) myosin-heavy chain, b) β-actin, c) α-actinin, d) 68 kDa protein, e) desmin, f) 45 kDa protein, g) actin, h) tropomyosin-β chain, i) tropomyosin-α-chain, j) 32 kDa protein, k) 29 kDa protein, l) 25 kDa protein, m) myosin-light chain, n) troponin I, o) myosin-light chain, o) α-amylase.](image-url)
Improving Digestion II

In vivo Study

- Similar patterns of enhanced protein digestion were observed in both studies

<table>
<thead>
<tr>
<th>Food Protein</th>
<th>GASTRIC</th>
<th>ILEAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In vitro</td>
<td>In vivo</td>
</tr>
<tr>
<td>Whey</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zein</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Soy</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Beef muscle</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Wheat</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

nd = not determined
Effect of actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) on the digestion of food proteins determined in the growing rat.

Rutherford, S. M., Montoya, C. A., Zou, M. L., Moughan, P. J., Drummond, L. N., & Boland, M. J.

Food Chemistry 2011: 124(4), 1681-1689
Improving Digestion II

In vivo Study

Using an NMR 27Al isotope model the gastric emptying rates (GER) were measured *in vivo*

- beef muscle
- soy protein
- wheat proteins
The green kiwi (actinidin) diet increased the GER significantly.
Improving Digestion II

In vivo Study

- In vivo study demonstrated 2 mechanisms of green kiwi associated with improved digestion
 - Enhanced protein breakdown
 - Stomach
 - Small intestine
 - Increased gastric emptying rate
Does actinidin affect the digestion of other dietary food proteins?

- Using the 2-stage *in vitro* model we studied a range of typical dietary proteins:
 - Fish (Hoki & tuna)
 - Chicken
 - Yoghurt
 - Cottage cheese
 - Egg
 - Pork
 - Tofu/bean curd
- Actinidin consistently enhanced protein digestion
Constipation – a common GI motility disorder

- Prevalence rates vary around the world (4-28%)
 - Most recent reviews estimate 12%-19%
 - More prevalent in women and older adults

- Decreases health-related quality of life in otherwise healthy people & those with other disease conditions
 - Often is unreported

- Significant financial burden in health costs
 - Estimates in the US suggest
 - constipation is the cause of 2.5million physician visits annually & >USD400million for laxatives
 - USD2752 per patient treated
Constipation Therapies

- Diet & lifestyle
- Laxatives
 - Bulk forming e.g. psyllium
 - Emollients e.g. mineral oil
 - Osmotic agents e.g. salts and lactulose
 - Stimulants e.g. anthraquinones
- Serotonergic agents
 - 5-HT4 receptor agonists
- Chloride channel activators
Is there a possible food solution?

- Diet & lifestyle
- Total dietary modification
 - Can be difficult
- Simple addition of a fruit to the diet
 - May offer a realistic option

Anecdotal evidence for the effectiveness of kiwi
Kiwi & Laxation in the Elderly (NZ)

- Cross-over design (1 week baseline, 3 weeks per period)
- N=38 (13 men & 25 women) >60 years
- 1 kiwi per 30kg body weight (2-3 kiwi)
- Daily diaries included measures of
 - Frequency of defaecation
 - Stool consistency
 - Stool volume
 - Ease of defaecation
- Significant improvements in all measures

Kiwi Relieve Constipation in Chinese Patients (Hong Kong)

- Case control trial (2 week baseline, 4 week intervention)
- N = 53 (33 constipated 20 healthy)
- 2 kiwi per day (1 morning, 1 evening)
- Measures of frequency (CSBM), stool form (Bristol Stoll Scale), straining, bothersomeness, satisfaction of bowel habit & laxative use
- Measures of anorectal physiology (transit time, sensation etc)

- Significant changes in bothersomeness, satisfaction, laxative use & several measures of anorectal physiology in constipated patients

The Effect of Consuming Kiwis on Constipation in Adults (EU)

- Repeated measures (baseline 2 weeks, kiwi intervention 3 weeks (3 kiwi per day))
- N= 38 (20-70 years) constipated patients (Rome III criteria)
- Daily dairies for 5 weeks
 - Stool frequency
 - Stool consistency (Bristol Stool Scale)
 - Stool volume
 - Ease of defaecation
 - Use of laxatives
 - Food habits
- Weekly evaluation of satisfaction over the week

Prof. M. Hiele (Gastroenterology Dept., Catholic University of Leuven, Belgium)
Changes in Bowel Habits

Significant improvements in both stool frequency and ease of defaecation following consumption of kiwi
Changes in Stool Characteristics

Significant improvements in both stool consistency and volume following consumption of kiwi
Conclusions

- Chronic constipation may be relieved by consuming 3 kiwi per day

Other findings:
- Patients reported a significant reduction in the bloated feeling after consumption of kiwi began
- Patient satisfaction scores improved significantly with consumption of kiwi
- No effect of age, gender or BMI was observed
- Improvements continued to be recorded over the period of kiwi consumption
Potential Mode of Action of Kiwi in Constipated Patients

- The fibre in kiwi has an important role as
 - A faecal bulking agent
 - Water-holding capacity
 - Swelling
 - Viscosity effects may enhance laxation
- However the fibre alone does not account for the observed laxative effects
- Kiwi enzymes may enhance transit times
- Other components in kiwi may have effects on mucosa and GI motility
What does all this mean?

- Kiwi are a natural digestive aid
 - They are the digestion fruit
 - Suitable for healthy individuals to promote digestion & gut health benefits
 - Suitable for those with digestive dysfunction
Kiwi are effective throughout the GI tract

- Multifunctional effects for various digestive functions
 - Protein digestion
 - Fibre digestion & effects
 - Motility / regularity

- Multiple targets within the GI tract
 - Stomach
 - Intestines
 - Colon
Thank you

Discussion